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Quantum mechanics from a geometric-observer’s viewpoint
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Abstract. We propose a version of non-relativistic quantum mechanics in which the pure states
of a quantum system are described as sections of a Hilbert (generally infinitely-dimensional)
fibre bundle over spacetime. Evolution is governed via a (kind of) parallel transport in this
bundle. Some problems concerning observables are considered. The equations of motion for
the state sections and observables are derived. We show that up to a constant the matrix of the
coefficients of the evolution operator (transport) coincides with the matrix of the Hamiltonian

of the investigated quantum system.

1. Introduction

In conventional non-relativistic quantum mechanics a pure state of some quantum system
is described by a state vector in a (generic infinitely-dimensional) Hilbert space [1,2]. The
time evolution of this vector is governed by the Sidinger equation but, for some purposes,

it can also be represented (equivalently) via the so-called evolution operator [2]. In [3] (see
also [4] which is almost a review of [3], but also contains new material) an interpretation
of this operator as a parallel transport in a (generic infinitely dimensional) vector bundle
over spacetime is suggested.

Regardless of the fact that [3, 4] do not meet any present-day mathematical standards
of rigor, they do contain some interesting ideas which we develop in the present work. On
the one hand, we accept the description of a quantum evolution as a (parallel) transport (of
sections) in a (Hilbert) fibre bundle over spacetime. On the other, we agree that quantities
like the state vectors should generally explicitly depend on the observer with respect to
which they are referred, a fact which is usually implicitly assumed. An analogous feature
can also be found in Prugoiid’'s approach to quantum theory (see [5] for a selective
summary), but we shall not deal with it here. In the present work we apply these ideas to
the description of pure quantum states.

This paper develops some aspects of the geometric approach to non-relativistic quantum
mechanics based on the Sgtlinger equation. We make an attempt to apply the theory
of fibre bundles (and (linear) transports on them) to quantum mechanics. In particular,
we describe the time evolution of pure quantum states, conventionally governed by the
Schibdinger equation, as a linear transport of sections (of a fibre bundle over spacetime)
along the trajectory (world line) of a given (local, i.e. point-like) observer. It should be
noted that this transport is not in the ‘direction of time’, it is along the observer’s world line
parametrized with the (observer’s proper) time. By means of the transport, we transform

1 E-mail address: bozho@inrne.acad.bg
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section values from one spacetime point to another. This ‘transportation’ may be towards
increasing as well as decreasing time values, which reflects the fact that thaigger
equation (together with certain initial condition(s)) predicts wavefunction values in the future
as well as in the past.

In section 2 we briefly review the notion of a linear, in particular parallel, transport
along paths in vector bundles. In section 3 we make our basic assumptions concerning the
geometry of quantum mechanics. We suppose the (pure) states of a quantum system to
be described by sections of a Hilbert fibre bundle whose standard fibre is a Hilbert space,
isomorphic to that one of the conventional approach. This bundle is assumed to be endowed
with a (Hermitian fibre) metric by means of which the expectation (mean) values of the
observables are determined. The time evolution of a system'’s state is governed by a (kind
of) parallel transport found via the Sduinger equation. This transport is supposed to
preserve the scalar products defined by the metric. In our approach the observables are
represented as bundle morphisms. In section 4 we investigate certain consequences of the
natural requirement that the expectation values must be independent of the additional path
via which they are defined at points different from that at which the observer is situated.
Section 5 is devoted to the equations of motion governing the time evolution of the state
sections and observables. A remarkable result here is that up to a constant the matrix of
the Hamiltonian coincides with the matrix of the coefficients of the evolution operator. In
this sense we can state that in our approach the Hamiltonian plays the role of a gauge field.
We close the paper with some remarks in section 6.

2. Mathematical preliminaries

In this section we recall some facts concerning linear transport along paths in vector bundles
[6].

Let (E,m, M) be a complex vector fibre bundle with bas¢, total spaceE, and
projection : E — M. The fibresk, := n~(x) C E, x € M, are isomorphic vector
spaces, i.e. there exists a vector spcand isomorphismk, x € M suchthai, : E, — H.

We do not make any assumptions on the dimensionalityFofr( M), i.e. H can have a

finite as well as infinite dimension. (Note that the results of [6, 7] cited are also valid in the
infinite-dimensional case regardless of the fact that they are proved under the assumption
of finite dimensionality.)

By J andy : J — M we denote a real interval and a pathMf, respectively.

A C-linear transport (L-transporf) along pathsin (E, 7w, M) is a mapL : y — LY,
whereL” : (s,t) — LY, s,t € J is the (L-)transport along, andL!_,, : 7~ 1(y(s)) —

7 Yy (1)), called (L-)transport along from s to ¢, satisfies the equalities

LY, oLl,,=L", rs,teld (2.1)
LY, =idrag ) sel (2.2)
LY, Ou+pv)=ALY ,u+4+puLll v w, € Cou,veniy@s)). (2.3)
Here idy denotes the identity map of a s&t The general form oL!_, is described by

LY, =F") o FY s,tel (2.4)

with F} : 7=(y(s)) — Q, s € J, being one-to-one (linear) maps onto one and the same
(complex) vector space Q.
From (2.1) and (2.2) we see that

Ly pt=1rr.,. (2.5)
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According to [8,theorem 3.1] the set of (resp. linear) transports which are
diffeomorphisms and satisfy the locality and reparametrization conditions.Li.e, €
Diff (x1(y (s)), 72y (1)), LYY, = L7, for s, € J’, with J' being a subinterval o,
andL{",, = L] . .t € J" with 7 being a 1:1 map of af-interval J” onto J, are in
one-to-one correspondence with the (axiomatically defined (resp. linear)) parallel transports
(along curves). So, the usual parallel transport alpnfyjom y (s) to y (¢), assigned to a
linear connection, is a standard realization of the general (resp. linear) trahgport

Let ¢ be a (Hermitian) fibre metric onH, =, M), i.e. [9] ¢ : x — g, with
g . Ex x E, — C, x € M, being non-degenerate Hermitian forms, ge.are Hermitian,
nondegenerate maps which ddinear in the second argument afidantilinear in the first
one. A fibre metricg and an L-transporL are calledconsistenfrespectively along/) if
L preserves the scalar product definedghy.e. [7]

8y(s) = 8y © (L?v/—n X L?v/—n‘ s, 1€ J (26)
for all (respectively the giveny. Different results concerning this consistency can be found
in [7].

If h:H xH — Cis a Hermitian, nondegenerate map whictCiantilinear in the first
argument andC-linear in the second one (a Hermitian metric (scalar producty)nthen,
evidently, the mag : x — g, '= h(l,-, ;") : Ex x E, — C is a fibre metric onk, =, M).
Conversely, ifg is a fibre metric in £, 7, M) then, using the results from [7], it can easily
be proved that the map := g, (I;1, ;1) : H x H — C is a Hermitian metric or¥ iff
there is an L-transport along paths consistent with

Letn:J x J' — M be aC? map. The curvature operat®” (s, ) : Eys = Ensn
of the L-transportL with respect tog at (s, 1) € J x J' is defined by [10, equation (3.1)].

Let §,¢ € R, be such thatis + 5,1 +€) € J x J' and A be the (oriented) closed
path defined as a product of the following paths: — n(s + o,t) for o € [0, 4],
T+ ns+8,t+71)fort € [0,¢], 0 = n(s+68—o0,t+¢) for o € [0,68], and
T > n(s,t +e€ —1) for t € [0,¢]. Hencea is a closed (oriented) loop connecting
the pointsn (s, t), n(s +68,1), n(s +8,¢ 4+ €), n(s, t + €), andn(s, t) in the written order.

SupposingL!_,, to have aC? dependence on (and thereof onr) and using
[6, proposition 2.1], we obtain, after some calculations, that the composition of the
successive L-transports of a vector igts, ) along the paths forming. is represented
by an operator whose matrix has the following expansion (see [11, section 4])

1—8eR"(s, 1) + 083 + 0(e3) + 0(8%) + 0(€25) (2.7)

in some field of local bases. Here 1 is the unit matrix aRd(s, ) is the matrix
corresponding toR"(s, t). If the L-transport along a product of paths is equal to the
composition of the L-transports along the corresponding paths of the product (in the
respective order), then this operator coincides with the linear transport along

3. Basic differential-geometric assumptions

The state of a quantum system will be described by a quaitigssumed to be a section
of a vector bundle £, =, M) over the spacetim@/: ¢ € SeqE, n, M) :={§ : & : M —
E, o0& =idy}. The bundle £, =, M) is not supposed to be locally trivial. The typical fibre

1 Notice thath is always independent af e M. The transitiorg < & is similar to the one in (gauge) gravitational
theories, where (at a fixed point) one transforms a general point-depending metric to the Minkowski metric and
vice versa or, equivalently, to the transition from a general basis to a local fierbein.
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H is supposed to be a Hilbert space, so such are all (isomorpii} fibresE, := 7 ~1(x),
x eM.

One can associate an L-transport along paths with the evolution of any non-relativistic
guantum system. For pure states this can be done as follows (cf [3])y Let — M be
the world line of an observeB. We interprett € J as a proper time (eigentime) &. We
suppose a quantum system to be describedst y(r) € M, at the ‘moment’r € J, by
the state vectot, (1) € E, (), generally depending op and: separately; in particular, it
may depend only o (7). Let B describe the evolution of the system with a Hamiltonian
H, (¢) through the Sclidinger equation, which in matrix form regds

d
at/)y(t) =H, ()Y, ). (3.1)

Here and from now on in our text we denote with bold symbols the matrices corresponding
to vectors or operators in (a) given (field of) bases (for details about infinite-dimensional
matrices, see, e.g., [12]). We can write

I//y(t) = Uy([» tO)Wy(IO) t,toeJ (32)

wheretg € J is fixed andU,, (¢, o) is a linear operator, called tieolution operatoy defined
as the unique solution of the initial-value problem [2]

0
|h5UV (t,10) =H,0)U,(t, to) (3.3)
U, (to, to) = idg (3.4)

It is evident thatU, (¢, to) : E, ) — E, IS an L-transport along from 7o to ¢, i.e.
U:yw~ U, :(t o)+~ UMt to) is an L-transport along paths irE(x, M). Moreover,
under certain natural assumptions (cf [3]),turns to be a (usual) parallel transport.

The fibre bundle £, =, M) is assumed to be endowed with two structures: a linear
transport along pathg, which is supposed to coincide with the above-defined evolution
operatorUt and a Hermitian fibre metrig consistent with it. For brevity, as usual, we use
the bracket notation:

(U ()IE))x = (¥ (x), E(x)) x €M, y.§ eSedE, n, M). (3.5

So, now the consistency condition (2.6) reads

(W NIEW N)ye) = (LI (DI EY D))y 0)- (3.6)
Equation (3.6) restricts us to consider onlpitary L-transports with respect to the
metric. In fact, if we define theHermitian conjugateto L), transport, TL7 ,
7Ny (s)) = 7 y (1) by

(L DIEY @)y = (W L EW )y

then, due to (2.5), we see (3.6) to be equivalentitp,, = L), = (L7 ,)~16.

Let O be the set of observables. Its connection with the spacetime is described by a map
¢ : O — Morf(E, m, M) assigning toA € O a morphismA, : E — E,i.e.moA, =7
(and henced, : Ex — E,).

y(tg) *

1 In this work we present in matrix form all relations containing derivatives. In this way we avoid problems
connected with the differentiation of fields of objects defined (or actingEore.g. 9y, (r)/dr is not (‘well’)
defined at all. The invariant form of these relations will be given elsewhere.

i Later we preserve the notatidnas most of the results hold mathematically for generic L-transpprtot only

for the evolution operatot/ .

§ Dropping the arguments, I andG are the matrices of the transport and metric, respectively, the last equality

is equivalent t0U = G-1TU ' G.
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The set of observerB consists of map$, : SeqE,r, M) — E,, observers at,
assigning to any state sectigna state vector at € M, i.e. B, : ¥ — ¥g(x).

We define theexpectation valuef A € O with respect toB,, when the system has a
state sectiony, by

(V)[4 Y50

A =
b= s @))

(3.7)

The vector

Vi =L sy ()

can be interpreted as a state vector of the quantum system=ay (¢) ‘predicted’ by an
observerB, situated atx = y(s). (Herey may not be the observer's world line.) By
definition the expectation value of € O at y = y(¢) with respect toB,, x = y(s), along

y is

y e Vs Aty (Wa@ILL, 0 Ay o LT Vs
Bt gl L E v (W) Ws(0))x

where (3.6) was used. Evidently, we ha\®} . = (A)p

(3.8)

20N

4. Observables and the evolution operator

We assume the expectation valuesk O aty = y(t) with respect to an observet, to
be independent of the path via which it is determined, i.e ffor/’ - M ando, t € J,
we demand

Ay, = (Ao, if Blo) =y(s) andB(r) = y(1). 4.1)

This equality is a partial realization of the physical requirement that the observed
(expectation) values of the dynamical variables must be independent of the way they are
calculated.

For a patha : J” — M containing a closed loop at, i.e. a(s) = «a(t) = x, for
somes,t € J”, this condition reduces t¢A)%  , = (A)p, as we can choosg to be
Bs i [0, 0] = {x}. Using (3.8) we can rewrite the last condition @ss (x)|A,¥p(x))x =
(Yp()|L!s0A 0Ll Yp(x)),. Admitting this equality to be valid for everys(x) € E;,
x =y(s), we get

[LY,,, Al =0 forany« forwhich a(s) = a(r) (4.2)

s—>t°

where [, -] denotes the commutator of the corresponding operators. This result is a special
case of the equation

[LY . oLl  A)]=0 for y(s) = B(r) andy (t) = B(o) (4.3)

o—>T?

which is a corollary of (3.8) and (4.1).

In particular,A, commutes with the L-transport along any closed path (leopiience,
if we choosex = A, with A being the oriented closed path defined at the end of section 2,
then for any L-transport satisfying the condition at the end of section 2, we obtain

[R7(s,1), A)] =0 (4.4)

where (2.7) was used, i.e. the curvature operator of the mentioned linear transport commutes
with all observables. This is a necessary condition for the validity of (4.1).

As we have seen above, the maf ,, for a(s) = «(¢) is independent of any local
coordinates or trivializations (if any), it generally non-trivially transforms state onto state,
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and leaves the observables invariant. Consequently it acts and can be considered as a local
symmetry transformation.

The linear transporfl. induces alongy : J — M the following transformation of an
observabled,, or, more precisely, ofA,|x

40N

Ay > Al(s, 1) == L{, 0 A, 0L, Eyi) = Eys). (4.5)

In fact, A} (s, t) is the result of ‘L-transportation’ of,|g,, fromz tos alongy. Rigorously
speaking, the mag, |, — Al (s, t) is a linear transport along from ¢ to s in the fibre
bundle of bundle morphisms oveE(x, M) (for details, see [13, section 3]).

For the closed path and special L-transports defined at the end of section 2 we can
substitute (2.7) into (4.5). This gives

Al(s.1) = Aylg,,, +8[R(s. 1), A,] + O((, €)°)
where O((8, €)®) means third-order quantities thande. Combining this with (4.4), we
find
Al(s.0) = Aylg,, + 06, 6)°). (4.6)
Substituting equation (4.5) into (3.8), we get
(Y(X)|Ay (s, Yp (X))«

o | 4.7
(AVss W () [¥5(0)). o

Due to (3.6), (3.8), and (4.1), we evidently have
(WAL (s, DY ())x = (Vg JAYE e = (WB)IAL(S, 1) Pp(x))s
B(s") = y(s) = x, B(t") = y (1)
If r,r',s,t € J,thenL) , =LY oL’ ,oLl., (see (2.1)). Inserting this equality

r'—t r—r

into (4.5) and using (2.5) we, after some algebra, obtain
AV (r,s) o LY =L"_ o Af;(r', 1) E,oy = Epgy. (4.8)

r'—=r r'—=r

If L7 is a parallel transport along, then putting heres = 8~1a8, whereg : [a, b] —
M, Ba) = y(@r) =yF), Bb) = y(s) = y(@), anda : [a',b] > M, a(d’) = a V), we
get

(LS . Ab(a, )] =0

for every closed patlx located aty and any path3 containingy andx. However, for
general L-transports this equality may not hold.

Let us assume that for the pointe M there is a neighbourhodd > x such that can be
connected by a path with any point froth Then there is a homotopy : U x [0, 1] - M
connectingy, : U — x and the inclusion mapy : U — M,iy(y) = y € U, ie.
B(,0) := x, andB(-, 1) ;== 1y. Hence, the expectation value afe O at anyy € U with
respect to an observet, is

(Wp(@)IAG" Y ().
(VX)) Yp (X))«
where A5 := A000,1) = L% 0 A, 0 LIV 1 E, — E,.

Every intermediate poinB(y, t), t € [0, 1] is connected withx (besides vigs(y, -))
also by the pattg, . := B(y, )ljo,.] : t = B(y,t) for ¢t € [0, ]. We have

(WAL Y5(x)),
(W5 () W5 (X)),

(A" = (g1 =

By . By,x
(A" == Apo, =
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with
Ab = Al 0,0y =LP oA, o LY E, - E,. (4.9)

O—1
Let us assume that the evolution of a quantum system aleyg is given by
Vg, (1) = Lﬂ‘ " Wg,.(0) through the Sclidinger equation (3.1), i.e. the L-transport satisfies

equation (3. 3)
sothat h Lﬂ” N

t—0 — t—0

0
Ih Lﬂ&‘[

o Lot = Hp, (OLg

O0—t

Hp, (1)

Differentiating the matrix form of (4.9) with respect toand using these equalities, we
get

_ 0
ho Ay = —[Hy' (1), Ay (4.10)
where Hzf‘r’(r) = Lﬂ‘ “oo Hg ()0 Lo

. o, is the bundle morphism restricted afi,
corresponding to the Hamlltomaﬂﬁ (r) according to (4.9).

5. Equations of motion

The Schodinger equation (3.1) is an equation of motion for the state vectors.
Equation (4.10) plays the same role with respect to observables. Below we consider briefly
the analogues of these equations in the theory considered here with linear transports.

Let B € B be an observer with a world ling : / — M, i.e. B : x — B,
SedE,n,M) — E.,x = y(s),s € J. Let for a fixedsyo € J the state vector of the
quantum system beyo := ¥, (s0) € E, (). We assume that along the state vector with
respect toB at y(s), s € J, is obtained via some linear transpdrtalong paths, viz

Yy (s) = LY vo. (5.1)

This equation is our analogue of (3.2) and it plays the role of the state vector (section)
equation of motion.
Let us define the matriX’, (s) of the coefficientsof an L-transport by

0
') () = (aLZ—n) . (>2)
Evidently (see (2.4))

_ i v y_18F
rw == () =@ 53)

Now we shall prove thatp to a constant in our theor¥', (s) plays the role of a (matrix)
Hamiltonian describing the system’s evolution through the $dimger-type equation. In
fact, from (5.2) and (2.4) we find

d

ELJ;—H = ([)L\._” (54)
Combining this equation with (5.1), we confirm ourselves that) satisfies the Scidinger
equation (3.1) withH, (r) = —ihT", (r), which proves our assertion.

If the system evolution is described by a Hamiltoniép(z) via (3.1), then our results
hold for I, (t) = —H, (1) /ih.
I, (s) is a given operator, then equation (5.4) with an initial condition (2.2) uniquely
defines the linear transpoit.
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The matrixI', (1) can also be called a ‘gauge matrix’ as it defines the ‘extended
(covariant) derivatives’. In fact, recalling [6] that the differentiation along pdhsy +—
D defined byL acts on aC! sectiony according to

a
Dry)(s) =Dy = [g(LsﬁHsl/f(V(s + 6)))}

e=0
we see thaD} : Sed(E, 7, M) — 7~ (y(s)) and the matrix of the components Bf v
is 01 (s)/9s + Iy, ()2 (s).

The above discussion allows us to interpret the usual Hamiltonian as a gauge operator,
or, in some sense, as a ‘generalized affine connection’ along paths.

Now to derive the generalization of (4.10) we have to differentiate the matrix form of
(4.5) with respect ta and use (5.4). Thus we get

9
SAL (.1 = —[Ty (), AY(s. D). (5.5)

This is the equation of motion required for the observables. In terms of the Hamiltonian,
because of', ;) = —H, (t)/ih, it reads

— 0
|haAg(s, 1) = [H,(s), Al (s, 1)]. (5.6)
Analogously, differentiating the matrix form of (4.5) with respect tave find
0
IhEAg(S’ 1) = —[H,(s, 1), A} (s, 1)] (5.7)
whereT’, (1) = —H,, (1) /ih was used and, (s, 1) := L7 . o H,(t)o L? ., is the morphism

restricted onkE,, corresponding to the Hamiltoniaf,. Equation (5.7) is an evident
generalization of (4.10) for arbitrary path

6. Conclusion

The approach to non-relativistic quantum mechanics developed in this paper is intended to
bring it to the class of physical theories mathematically based on the formalism of fibre
bundles. At the present level, the new approach is equivalent to the conventional one which
will be proved in detail elsewhere.

The novel ‘bundle’ treatment of old problems reveals new possibilities for
generalizations and interpretations (cf the similar advantages of Prikjevéheory [5]).

In particular, it is likely that the bundle formalism in quantum theory will be useful for the
unification of quantum mechanics and gravitation. A reason for this hope is the fact that
we have not used any concrete model of spacetime; it can be flat as well as curved and,
generally, has to be determined by another theory such as special or general relativity.

The fibre bundle formalism also seems applicable to relativistic quantum theory and
field theory which will be a subject of other works. Since the purpose of the present paper
is a geometric description of the non-relativistic case, here we want only to make some
comments on these items.

The fibre bundle approach to relativistic quantum mechanics, generally, needs a different
mathematical base than the one used in this work. A typical example of this kind is a special-
relativistic particle described by the Klein—Gordon equation. An essential point here is that
this is a second-order partial differential equation with respect to time. This implies that an
initial value of the wavefunction is not sufficient for the unique determination of its other
values; for this one needs the initial values of the wavefunction and its first time derivative.



Geometrization of quantum mechanics 1305

So, we cannot directly apply a ‘linear transportation’ to obtain wavefunction values from
one another (for details, see [14, section 5]). A way to overcome this problem is to consider
a fibre bundle, the elements of whose fibres have two components formed from the wave
functiony and its first time derivativey/dt, i.e. they are of the typéy, dv/3t)T. Such a
two-component wavefunction satisfies a first-order partial differential equation with respect
to time [1, ch XX, section 5]. This last equation admits consideration analogous to that of
the Schédinger equation presented in this paper. The above-mentioned difficulty does not
arise for particles described via the Dirac equation. In fact, since the Dirac equation can
be written as [1, ch XX, section 6k#v/dr = Hpy, Hp being the Dirac Hamiltonian, we

can applymutatis mutandighe present investigation to Dirac particles. For this purpose
we have to replace the non-relativistic Hamiltonian with the Dirac Hamiltonian, the Hilbert
space with the space of 4-spinors, etc.

In connection with further applications of the bundle approach to quantum field theory,
we note the following. Since in this theory the matter fields are represented by operators
acting on (wave) functions from some space, the matter fields in their bundle modification
should be described via morphisms of a suitable fibre bundle whose sections will represent
the (wave) function. We can also, equivalently, say that in this way the matter fields would
be sections of the fibre bundle of bundle morphisms of the mentioned suitable bundle. An
important point here is that the matter fields are primarily related to the bundle arising over
the spacetime, not to the spacetime itself to which are directly related other structures, such
as connections and the principle bundle over it.
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