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Quantum mechanics from a geometric-observer’s viewpoint
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Abstract. We propose a version of non-relativistic quantum mechanics in which the pure states
of a quantum system are described as sections of a Hilbert (generally infinitely-dimensional)
fibre bundle over spacetime. Evolution is governed via a (kind of) parallel transport in this
bundle. Some problems concerning observables are considered. The equations of motion for
the state sections and observables are derived. We show that up to a constant the matrix of the
coefficients of the evolution operator (transport) coincides with the matrix of the Hamiltonian
of the investigated quantum system.

1. Introduction

In conventional non-relativistic quantum mechanics a pure state of some quantum system
is described by a state vector in a (generic infinitely-dimensional) Hilbert space [1, 2]. The
time evolution of this vector is governed by the Schrödinger equation but, for some purposes,
it can also be represented (equivalently) via the so-called evolution operator [2]. In [3] (see
also [4] which is almost a review of [3], but also contains new material) an interpretation
of this operator as a parallel transport in a (generic infinitely dimensional) vector bundle
over spacetime is suggested.

Regardless of the fact that [3, 4] do not meet any present-day mathematical standards
of rigor, they do contain some interesting ideas which we develop in the present work. On
the one hand, we accept the description of a quantum evolution as a (parallel) transport (of
sections) in a (Hilbert) fibre bundle over spacetime. On the other, we agree that quantities
like the state vectors should generally explicitly depend on the observer with respect to
which they are referred, a fact which is usually implicitly assumed. An analogous feature
can also be found in Prugovečki’s approach to quantum theory (see [5] for a selective
summary), but we shall not deal with it here. In the present work we apply these ideas to
the description of pure quantum states.

This paper develops some aspects of the geometric approach to non-relativistic quantum
mechanics based on the Schrödinger equation. We make an attempt to apply the theory
of fibre bundles (and (linear) transports on them) to quantum mechanics. In particular,
we describe the time evolution of pure quantum states, conventionally governed by the
Schr̈odinger equation, as a linear transport of sections (of a fibre bundle over spacetime)
along the trajectory (world line) of a given (local, i.e. point-like) observer. It should be
noted that this transport is not in the ‘direction of time’, it is along the observer’s world line
parametrized with the (observer’s proper) time. By means of the transport, we transform
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section values from one spacetime point to another. This ‘transportation’ may be towards
increasing as well as decreasing time values, which reflects the fact that the Schrödinger
equation (together with certain initial condition(s)) predicts wavefunction values in the future
as well as in the past.

In section 2 we briefly review the notion of a linear, in particular parallel, transport
along paths in vector bundles. In section 3 we make our basic assumptions concerning the
geometry of quantum mechanics. We suppose the (pure) states of a quantum system to
be described by sections of a Hilbert fibre bundle whose standard fibre is a Hilbert space,
isomorphic to that one of the conventional approach. This bundle is assumed to be endowed
with a (Hermitian fibre) metric by means of which the expectation (mean) values of the
observables are determined. The time evolution of a system’s state is governed by a (kind
of) parallel transport found via the Schrödinger equation. This transport is supposed to
preserve the scalar products defined by the metric. In our approach the observables are
represented as bundle morphisms. In section 4 we investigate certain consequences of the
natural requirement that the expectation values must be independent of the additional path
via which they are defined at points different from that at which the observer is situated.
Section 5 is devoted to the equations of motion governing the time evolution of the state
sections and observables. A remarkable result here is that up to a constant the matrix of
the Hamiltonian coincides with the matrix of the coefficients of the evolution operator. In
this sense we can state that in our approach the Hamiltonian plays the role of a gauge field.
We close the paper with some remarks in section 6.

2. Mathematical preliminaries

In this section we recall some facts concerning linear transport along paths in vector bundles
[6].

Let (E,π,M) be a complex vector fibre bundle with baseM, total spaceE, and
projectionπ : E → M. The fibresEx := π−1(x) ⊂ E, x ∈ M, are isomorphic vector
spaces, i.e. there exists a vector spaceH and isomorphismslx , x ∈ M such thatlx : Ex → H.
We do not make any assumptions on the dimensionality of (E,π,M), i.e. H can have a
finite as well as infinite dimension. (Note that the results of [6, 7] cited are also valid in the
infinite-dimensional case regardless of the fact that they are proved under the assumption
of finite dimensionality.)

By J andγ : J → M we denote a real interval and a path inM, respectively.
A C-linear transport (L-transport) along pathsin (E,π,M) is a mapL : γ 7→ Lγ ,

whereLγ : (s, t) 7→ L
γ
s→t , s, t ∈ J is the (L-)transport alongγ , andLγs→t : π−1(γ (s))→

π−1(γ (t)), called (L-)transport alongγ from s to t , satisfies the equalities

L
γ
t→r ◦ Lγs→t = Lγs→r r, s, t ∈ J (2.1)

Lγs→s = idπ−1(γ (s)) s ∈ J (2.2)

L
γ
s→t (λu+ µv) = λLγs→t u+ µLγs→t v µ, λ ∈ C, u, v ∈ π−1(γ (s)). (2.3)

Here idN denotes the identity map of a setN . The general form ofLγs→t is described by

L
γ
s→t = (F γt )−1 ◦ Fγs s, t ∈ J (2.4)

with Fγs : π−1(γ (s))→ Q, s ∈ J , being one-to-one (linear) maps onto one and the same
(complex) vector space Q.

From (2.1) and (2.2) we see that

(L
γ
s→t )

−1 = Lγt→s . (2.5)
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According to [8, theorem 3.1] the set of (resp. linear) transports which are
diffeomorphisms and satisfy the locality and reparametrization conditions, i.e.L

γ
s→t ∈

Diff (π−1(γ (s)), π−1(γ (t))), Lγ |J
′

s→t = Lγs→t for s, t ∈ J ′, with J ′ being a subinterval ofJ ,
andLγ ◦τs→t = Lγτ(s)→τ(t), s, t ∈ J ′′ with τ being a 1:1 map of anR-intervalJ ′′ ontoJ , are in
one-to-one correspondence with the (axiomatically defined (resp. linear)) parallel transports
(along curves). So, the usual parallel transport alongγ from γ (s) to γ (t), assigned to a
linear connection, is a standard realization of the general (resp. linear) transportL

γ
s→t .

Let g be a (Hermitian) fibre metric on (E,π,M), i.e. [9] g : x 7→ gx with
gx : Ex × Ex → C, x ∈ M, being non-degenerate Hermitian forms, i.e.gx are Hermitian,
nondegenerate maps which areC-linear in the second argument andC-antilinear in the first
one. A fibre metricg and an L-transportL are calledconsistent(respectively alongγ ) if
L preserves the scalar product defined byg, i.e. [7]

gγ (s) = gγ (t) ◦ (Lγs→t × Lγs→t ) s, t ∈ J (2.6)

for all (respectively the given)γ . Different results concerning this consistency can be found
in [7].

If h : H×H→ C is a Hermitian, nondegenerate map which isC-antilinear in the first
argument andC-linear in the second one (a Hermitian metric (scalar product) inH), then,
evidently, the mapg : x 7→ gx := h(lx ·, lx ·) : Ex ×Ex → C is a fibre metric on (E,π,M).
Conversely, ifg is a fibre metric in (E,π,M) then, using the results from [7], it can easily
be proved that the maph := gx(l−1

x ·, l−1
x ·) : H ×H → C is a Hermitian metric onH iff

there is an L-transport along paths consistent withg†.
Let η : J × J ′ → M be aC2 map. The curvature operatorRη(s, t) : Eη(s,t) → Eη(s,t)

of the L-transportL with respect toη at (s, t) ∈ J × J ′ is defined by [10, equation (3.1)].
Let δ, ε ∈ R+ be such that(s + δ, t + ε) ∈ J × J ′ and λ be the (oriented) closed

path defined as a product of the following paths:σ 7→ η(s + σ, t) for σ ∈ [0, δ],
τ 7→ η(s + δ, t + τ) for τ ∈ [0, ε], σ 7→ η(s + δ − σ, t + ε) for σ ∈ [0, δ], and
τ 7→ η(s, t + ε − τ) for τ ∈ [0, ε]. Hence λ is a closed (oriented) loop connecting
the pointsη(s, t), η(s + δ, t), η(s + δ, t + ε), η(s, t + ε), andη(s, t) in the written order.

SupposingLγs→t to have aC2 dependence ons (and thereof ont) and using
[6, proposition 2.1], we obtain, after some calculations, that the composition of the
successive L-transports of a vector atη(s, t) along the paths formingλ is represented
by an operator whose matrix has the following expansion (see [11, section 4])

1l− δεRη(s, t)+O(δ3)+O(ε3)+O(δ2ε)+O(ε2δ) (2.7)

in some field of local bases. Here 1l is the unit matrix andRη(s, t) is the matrix
corresponding toRη(s, t). If the L-transport along a product of paths is equal to the
composition of the L-transports along the corresponding paths of the product (in the
respective order), then this operator coincides with the linear transport alongλ.

3. Basic differential-geometric assumptions

The state of a quantum system will be described by a quantityψ assumed to be a section
of a vector bundle (E,π,M) over the spacetimeM: ψ ∈ Sec(E, π,M) := {ξ : ξ : M →
E,π◦ξ = idM}. The bundle (E,π,M) is not supposed to be locally trivial. The typical fibre

† Notice thath is always independent ofx ∈ M. The transitiong ↔ h is similar to the one in (gauge) gravitational
theories, where (at a fixed point) one transforms a general point-depending metric to the Minkowski metric and
vice versa, or, equivalently, to the transition from a general basis to a local fierbein.
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H is supposed to be a Hilbert space, so such are all (isomorphic toH) fibresEx := π−1(x),
x ∈ M.

One can associate an L-transport along paths with the evolution of any non-relativistic
quantum system. For pure states this can be done as follows (cf [3]). Letγ : J → M be
the world line of an observerB. We interprett ∈ J as a proper time (eigentime) ofB. We
suppose a quantum system to be described byB at γ (t) ∈ M, at the ‘moment’t ∈ J , by
the state vectorψγ (t) ∈ Eγ(t), generally depending onγ and t separately; in particular, it
may depend only onγ (t). Let B describe the evolution of the system with a Hamiltonian
Hγ (t) through the Schr̈odinger equation, which in matrix form reads†

d

dt
ψγ (t) =Hγ (t)ψγ (t). (3.1)

Here and from now on in our text we denote with bold symbols the matrices corresponding
to vectors or operators in (a) given (field of) bases (for details about infinite-dimensional
matrices, see, e.g., [12]). We can write

ψγ (t) = Uγ (t, t0)ψγ (t0) t, t0 ∈ J (3.2)

wheret0 ∈ J is fixed andUγ (t, t0) is a linear operator, called theevolution operator, defined
as the unique solution of the initial-value problem [2]

ih̄
∂

∂t
Uγ (t, t0) =Hγ (t)Uγ (t, t0) (3.3)

Uγ (t0, t0) = idEγ(t0) . (3.4)

It is evident thatUγ (t, t0) : Eγ(t0) → Eγ(t) is an L-transport alongγ from t0 to t , i.e.
U : γ 7→ Uγ : (t, t0) 7→ Uγ (t, t0) is an L-transport along paths in (E,π,M). Moreover,
under certain natural assumptions (cf [3]),U turns to be a (usual) parallel transport.

The fibre bundle (E,π,M) is assumed to be endowed with two structures: a linear
transport along pathsL, which is supposed to coincide with the above-defined evolution
operatorU‡ and a Hermitian fibre metricg consistent with it. For brevity, as usual, we use
the bracket notation:

〈ψ(x)|ξ(x)〉x := gx(ψ(x), ξ(x)) x ∈ M,ψ, ξ ∈ Sec(E, π,M). (3.5)

So, now the consistency condition (2.6) reads

〈ψ(γ (s))|ξ(γ (s))〉γ (s) = 〈Lγs→tψ(γ (s))|Lγs→t ξ(γ (s))〉γ (t). (3.6)

Equation (3.6) restricts us to consider onlyunitary L-transports with respect to the
metric. In fact, if we define theHermitian conjugate to L

γ
s→t transport, †Lγs→t :

π−1(γ (s))→ π−1(γ (t)) by

〈Lγs→tψ(γ (s))|ξ(γ (t))〉γ (t) =: 〈ψ(γ (s))|†Lγt→sξ(γ (t))〉γ (s)
then, due to (2.5), we see (3.6) to be equivalent to†L

γ
s→t = Lγt→s = (Lγs→t )−1§.

LetO be the set of observables. Its connection with the spacetime is described by a map
ϕ : O → Morf(E, π,M) assigning toA ∈ O a morphismAϕ : E → E, i.e. π ◦ Aϕ = π
(and henceAϕ : Ex → Ex).

† In this work we present in matrix form all relations containing derivatives. In this way we avoid problems
connected with the differentiation of fields of objects defined (or acting) onE; e.g. ∂ψγ (t)/∂t is not (‘well’)
defined at all. The invariant form of these relations will be given elsewhere.
‡ Later we preserve the notationL as most of the results hold mathematically for generic L-transportL, not only
for the evolution operatorU .
§ Dropping the arguments, ifU andG are the matrices of the transport and metric, respectively, the last equality

is equivalent to†U = G−1U
>
G.
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The set of observersB consists of mapsBx : Sec(E, π,M) → Ex , observers atx,
assigning to any state sectionψ a state vector atx ∈ M, i.e.Bx : ψ 7→ ψB(x).

We define theexpectation valueof A ∈ O with respect toBx , when the system has a
state sectionψ , by

〈A〉Bx := 〈ψB(x)|AϕψB(x)〉x〈ψB(x)|ψB(x)〉x . (3.7)

The vector

ψ
γ

B,s,t := Lγs→tψB(γ (s))
can be interpreted as a state vector of the quantum system aty = γ (t) ‘predicted’ by an
observerBx situated atx = γ (s). (Here γ may not be the observer’s world line.) By
definition the expectation value ofA ∈ O at y = γ (t) with respect toBx , x = γ (s), along
γ is

〈A〉γB,s,t := 〈ψ
γ

B,s,t |Aϕψγ

B,s,t 〉γ (t)
〈ψγ

B,s,t |ψγ

B,s,t 〉γ (t)
= 〈ψB(x)|L

γ
t→s ◦ Aϕ ◦ Lγs→tψB(x)〉x
〈ψB(x)|ψB(x)〉x (3.8)

where (3.6) was used. Evidently, we have〈A〉γB,s,s = 〈A〉Bγ(s) .

4. Observables and the evolution operator

We assume the expectation value ofA ∈ O at y = γ (t) with respect to an observerBx to
be independent of the path via which it is determined, i.e. forβ : J ′ → M andσ, τ ∈ J ′,
we demand

〈A〉γB,s,t = 〈A〉βB,σ,τ if β(σ) = γ (s) andβ(τ) = γ (t). (4.1)

This equality is a partial realization of the physical requirement that the observed
(expectation) values of the dynamical variables must be independent of the way they are
calculated.

For a pathα : J ′′ → M containing a closed loop atx, i.e. α(s) = α(t) = x, for
some s, t ∈ J ′′, this condition reduces to〈A〉αB,s,t = 〈A〉Bx as we can chooseβ to be
βσ : [σ, σ ] → {x}. Using (3.8) we can rewrite the last condition as〈ψB(x)|AϕψB(x)〉x =
〈ψB(x)|Lγt→s ◦Aϕ ◦Lγs→tψB(x)〉x . Admitting this equality to be valid for everyψB(x) ∈ Ex ,
x = γ (s), we get

[Lαs→t , Aϕ ] = 0 for anyα for which α(s) = α(t) (4.2)

where [·, ·] denotes the commutator of the corresponding operators. This result is a special
case of the equation

[Lγs→t ◦ Lβσ→τ , Aϕ ] = 0 for γ (s) = β(τ) andγ (t) = β(σ) (4.3)

which is a corollary of (3.8) and (4.1).
In particular,Aϕ commutes with the L-transport along any closed path (loop)α. Hence,

if we chooseα = λ, with λ being the oriented closed path defined at the end of section 2,
then for any L-transport satisfying the condition at the end of section 2, we obtain

[Rη(s, t), Aϕ ] = 0 (4.4)

where (2.7) was used, i.e. the curvature operator of the mentioned linear transport commutes
with all observables. This is a necessary condition for the validity of (4.1).

As we have seen above, the mapLαs→t for α(s) = α(t) is independent of any local
coordinates or trivializations (if any), it generally non-trivially transforms state onto state,
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and leaves the observables invariant. Consequently it acts and can be considered as a local
symmetry transformation.

The linear transportL induces alongγ : J → M the following transformation of an
observableAϕ , or, more precisely, ofAϕ|Eγ(t) :

Aϕ 7→ Aγϕ(s, t) := Lγt→s ◦ Aϕ ◦ Lγs→t : Eγ(s)→ Eγ(s). (4.5)

In fact,Aγϕ(s, t) is the result of ‘L-transportation’ ofAϕ|Eγ(t) from t to s alongγ . Rigorously
speaking, the mapAϕ|Eγ(t) → A

γ
ϕ(s, t) is a linear transport alongγ from t to s in the fibre

bundle of bundle morphisms over (E,π,M) (for details, see [13, section 3]).
For the closed pathλ and special L-transports defined at the end of section 2 we can

substitute (2.7) into (4.5). This gives

Aλ
ϕ(s, t) = Aϕ|Eλ(s,t) + δε[Rη(s, t),Aϕ ] +O((δ, ε)3)

whereO((δ, ε)3) means third-order quantities inδ and ε. Combining this with (4.4), we
find

Aλ
ϕ(s, t) = Aϕ|Eλ(s,t) +O((δ, ε)3). (4.6)

Substituting equation (4.5) into (3.8), we get

〈A〉γB,s,t := 〈ψB(x)|A
γ
ϕ(s, t)ψB(x)〉x

〈ψB(x)|ψB(x)〉x . (4.7)

Due to (3.6), (3.8), and (4.1), we evidently have

〈ψB(x)|Aγϕ(s, t)ψB(x)〉x = 〈ψγ

B,s,t |Aϕψγ

B,s,t 〉x = 〈ψB(x)|Aβϕ(s ′, t ′)ψB(x)〉x
β(s ′) = γ (s) = x, β(t ′) = γ (t).

If r, r ′, s, t ∈ J , thenLγs→t = Lγr ′→t ◦ Lγr→r ′ ◦ Lγs→r (see (2.1)). Inserting this equality
into (4.5) and using (2.5) we, after some algebra, obtain

Aγϕ(r, s) ◦ Lγr ′→r = Lγr ′→r ◦ Aγϕ(r ′, t) : Eγ(r ′)→ Eγ(r). (4.8)

If Lγ is a parallel transport alongγ , then putting hereγ = β−1αβ, whereβ : [a, b] →
M, β(a) = γ (r) = γ (r ′), β(b) = γ (s) = γ (t), andα : [a′, b′] → M, α(a′) = α(b′), we
get

[Lαa′→b′ , A
β
ϕ(a, b)] = 0

for every closed pathα located aty and any pathβ containingy and x. However, for
general L-transports this equality may not hold.

Let us assume that for the pointx ∈ M there is a neighbourhoodU 3 x such thatx can be
connected by a path with any point fromU . Then there is a homotopyβ : U × [0, 1]→ M

connectingχx : U → x and the inclusion mapıU : U → M, ıU(y) = y ∈ U , i.e.
β(·, 0) := χx andβ(·, 1) := ıU . Hence, the expectation value ofA ∈ O at anyy ∈ U with
respect to an observerBx is

〈A〉β(y,·)B := 〈A〉β(y,·)B,0,1 =
〈ψB(x)|Aβ(y,·)ϕ ψB(x)〉x
〈ψB(x)|ψB(x)〉x

whereAβ(y,·)ϕ := Aβ(y,·)ϕ (0, 1) = Lβ(y,·)1→0 ◦ Aϕ ◦ Lβ(y,·)0→1 : Ex → Ex .
Every intermediate pointβ(y, τ ), τ ∈ [0, 1] is connected withx (besides viaβ(y, ·))

also by the pathβy,τ := β(y, ·)|[0,τ ] : t 7→ β(y, t) for t ∈ [0, τ ]. We have

〈A〉βy,τB := Aβy,τB,0,τ =
〈ψB(x)|Aβy,τϕ ψB(x)〉x
〈ψB(x)|ψB(x)〉x
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with

A
βy,τ
ϕ := Aβy,τϕ (0, τ ) = Lβy,ττ→0 ◦ Aϕ ◦ Lβy,τ0→τ : Ex → Ex. (4.9)

Let us assume that the evolution of a quantum system alongβy,τ is given by

ψβy,τ (t) = Lβy,τ0→tψβy,τ (0) through the Schr̈odinger equation (3.1), i.e. the L-transport satisfies
equation (3.3):

ih̄
∂

∂t
L
βy,τ
0→t =Hβy,τ (t)L

βy,τ
0→t so that ih̄

∂

∂t
L
βy,τ
t→0 = −Lβy,τt→0Hβy,τ (t).

Differentiating the matrix form of (4.9) with respect toτ and using these equalities, we
get

ih̄
∂

∂τ
A
βy,τ
ϕ = −[H

βy,τ
βy,τ
(τ ),A

βy,τ
ϕ ] (4.10)

where H
βy,τ
βy,τ
(τ ) := L

βy,τ
τ→0 ◦ Hβy,τ (τ ) ◦ Lβy,τ0→τ is the bundle morphism restricted onEx

corresponding to the HamiltonianHβy,τ (τ ) according to (4.9).

5. Equations of motion

The Schr̈odinger equation (3.1) is an equation of motion for the state vectors.
Equation (4.10) plays the same role with respect to observables. Below we consider briefly
the analogues of these equations in the theory considered here with linear transports.

Let B ∈ B be an observer with a world lineγ : J → M, i.e. B : x 7→ Bx :
Sec(E, π,M) → Ex, x = γ (s), s ∈ J . Let for a fixed s0 ∈ J the state vector of the
quantum system beψ0 := ψγ (s0) ∈ Eγ(s0). We assume that alongγ the state vector with
respect toB at γ (s), s ∈ J , is obtained via some linear transportL along paths, viz

ψγ (s) = Lγs0→sψ0. (5.1)

This equation is our analogue of (3.2) and it plays the role of the state vector (section)
equation of motion.

Let us define the matrixΓγ (s) of the coefficientsof an L-transport by

Γγ (s) :=
(
∂

∂s
L
γ
s→t

)
t=s
. (5.2)

Evidently (see (2.4))

Γγ (s) = −
(
∂

∂t
L
γ
s→t

)
t=s
= (F γ

s )
−1∂F

γ
s

∂s
. (5.3)

Now we shall prove thatup to a constant in our theoryΓγ (s) plays the role of a (matrix)
Hamiltonian describing the system’s evolution through the Schrödinger-type equation. In
fact, from (5.2) and (2.4) we find

∂

∂t
L
γ
s→t = −Γγ (t)L

γ
s→t . (5.4)

Combining this equation with (5.1), we confirm ourselves thatψγ (t) satisfies the Schrödinger
equation (3.1) withHγ (t) = −ih̄Γγ (t), which proves our assertion.

If the system evolution is described by a HamiltonianHγ (t) via (3.1), then our results
hold for Γγ (t) = −Hγ (t)/ih̄.

If Γγ (s) is a given operator, then equation (5.4) with an initial condition (2.2) uniquely
defines the linear transportL.



1304 B Z Iliev

The matrix Γγ (t) can also be called a ‘gauge matrix’ as it defines the ‘extended
(covariant) derivatives’. In fact, recalling [6] that the differentiation along pathsD : γ 7→
Dγ defined byL acts on aC1 sectionψ according to

(Dγ ψ)(s) = Dγs ψ =
[
∂

∂ε
(L

γ
s+ε→sψ(γ (s + ε)))

]∣∣∣∣
ε=0

we see thatDγs : Sec1(E, π,M)→ π−1(γ (s)) and the matrix of the components ofDγs ψ
is ∂ψ(s)/∂s + Γγ (s)ψ(s).

The above discussion allows us to interpret the usual Hamiltonian as a gauge operator,
or, in some sense, as a ‘generalized affine connection’ along paths.

Now to derive the generalization of (4.10) we have to differentiate the matrix form of
(4.5) with respect tos and use (5.4). Thus we get

∂

∂s
Aγ
ϕ (s, t) = −[Γγ (s),Aγ

ϕ (s, t)]. (5.5)

This is the equation of motion required for the observables. In terms of the Hamiltonian,
because ofΓγ (t) = −Hγ (t)/ih̄, it reads

ih̄
∂

∂s
Aγ
ϕ (s, t) = [Hγ (s),A

γ
ϕ (s, t)]. (5.6)

Analogously, differentiating the matrix form of (4.5) with respect tot , we find

ih̄
∂

∂t
Aγ
ϕ (s, t) = −[Hγ (s, t),A

γ
ϕ (s, t)] (5.7)

whereΓγ (t) = −Hγ (t)/ih̄ was used andHγ (s, t) := Lγt→s ◦Hγ (t) ◦Lγs→t is the morphism
restricted onEγ(s) corresponding to the HamiltonianHγ . Equation (5.7) is an evident
generalization of (4.10) for arbitrary pathγ .

6. Conclusion

The approach to non-relativistic quantum mechanics developed in this paper is intended to
bring it to the class of physical theories mathematically based on the formalism of fibre
bundles. At the present level, the new approach is equivalent to the conventional one which
will be proved in detail elsewhere.

The novel ‘bundle’ treatment of old problems reveals new possibilities for
generalizations and interpretations (cf the similar advantages of Prugovečki’s theory [5]).
In particular, it is likely that the bundle formalism in quantum theory will be useful for the
unification of quantum mechanics and gravitation. A reason for this hope is the fact that
we have not used any concrete model of spacetime; it can be flat as well as curved and,
generally, has to be determined by another theory such as special or general relativity.

The fibre bundle formalism also seems applicable to relativistic quantum theory and
field theory which will be a subject of other works. Since the purpose of the present paper
is a geometric description of the non-relativistic case, here we want only to make some
comments on these items.

The fibre bundle approach to relativistic quantum mechanics, generally, needs a different
mathematical base than the one used in this work. A typical example of this kind is a special-
relativistic particle described by the Klein–Gordon equation. An essential point here is that
this is a second-order partial differential equation with respect to time. This implies that an
initial value of the wavefunction is not sufficient for the unique determination of its other
values; for this one needs the initial values of the wavefunction and its first time derivative.
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So, we cannot directly apply a ‘linear transportation’ to obtain wavefunction values from
one another (for details, see [14, section 5]). A way to overcome this problem is to consider
a fibre bundle, the elements of whose fibres have two components formed from the wave
functionψ and its first time derivative∂ψ/∂t , i.e. they are of the type(ψ, ∂ψ/∂t)>. Such a
two-component wavefunction satisfies a first-order partial differential equation with respect
to time [1, ch XX, section 5]. This last equation admits consideration analogous to that of
the Schr̈odinger equation presented in this paper. The above-mentioned difficulty does not
arise for particles described via the Dirac equation. In fact, since the Dirac equation can
be written as [1, ch XX, section 6] i¯h∂ψ/∂t = HDψ , HD being the Dirac Hamiltonian, we
can applymutatis mutandisthe present investigation to Dirac particles. For this purpose
we have to replace the non-relativistic Hamiltonian with the Dirac Hamiltonian, the Hilbert
space with the space of 4-spinors, etc.

In connection with further applications of the bundle approach to quantum field theory,
we note the following. Since in this theory the matter fields are represented by operators
acting on (wave) functions from some space, the matter fields in their bundle modification
should be described via morphisms of a suitable fibre bundle whose sections will represent
the (wave) function. We can also, equivalently, say that in this way the matter fields would
be sections of the fibre bundle of bundle morphisms of the mentioned suitable bundle. An
important point here is that the matter fields are primarily related to the bundle arising over
the spacetime, not to the spacetime itself to which are directly related other structures, such
as connections and the principle bundle over it.
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